
AN EFFICIENT EMBEDDED BITSTREAM PARSING PROCESSOR FOR
MPEG-4 VIDEO DECODING SYSTEM

Yung-Chi Chung, Chao-Chih Huang, Wei-Min Chao, und Liung-Gee Chen

DSP/IC Design Lab.
Department of Electrical Engineering and Graduate Institute of Electronics Engineering

National Taiwan University, Taipei, Taiwan, R.O.C.

ABSTRACT

In this paper, the bitstream parsing analysis and an efficient
and flexible hitstream parsing processor are presented. The bit-
stream parsing analysis explores the critical part in bitstream pars-
ing. Based on the result, the novel approaches to parse data par-
titioned bitstreams are presented. An efficient instruction set op-
timized for bitstream processing. cspecially for DCT coefficient
decoding, is designed and the processor architecture can be pro-
grammed for various video standards. It has been integrated into
an MPEG-4 video decoding system successfully and can achieve
real time bitstream decoding with hitstream coded under 4CIF
frame size with 30 fps, 8Mbps, which is the specification of MPEG-
4 Advanced Simple Profile Level 5.

1. INTRODUCTION

As video coding standards development process keeps going on.
no matter for MPEG or H . 2 6 ~ series, more and more coding tools
are added to provide more functionalities and better compression
performance in a general video coding structure. Thus, its coded
data format must be changed. Moreover, commercial video prod-
ucts are now beginning to support several coding standards simul-
taneously [I] . So, a versatile bitsteam parser for a video coding
system implementation will be the trend. A hardwired parser is
not a goad choice to satisfy the rapidly transition of video coding
standards. On the other hand, adaptation of an embedded proces-
sor will make the design fast time-to-market. By re-programming
the firmware, one can change the specification to match another
new coding standard in short time. Moreover, firmware upgrade
can be accomplished by replacing the layout of the ROM in fabri-
catiun, even no changes if flash is used. Up to now, implementa-
tions of video decoder usually embed microprocessors on-chip to
be the parsing unit [I 1121[31.

Processing of the bitstream often requires bit-level operations
such as bit extraction and variable-length decoding functions. Pro-
cessors designed with 16-bit or 32-hit operations would spend many
cycles for a single bit operation. Therefore, it is not efficient to use
a general processor for bitstream parsing task. The introduction of
processors needs morc analysis and optimizations. For MPEG-4
video decoding system, both [41 and [5l propose such a solution.
These previous designs emphasize the importance of VLDFLD
operations, and propose enhanced datapath for VLDIFLD.

In this paper, we propose an embedded bitstream processor
for MPEG-4 video decoder. Based on our previous work 141 and
codeword type distribution analysis, efficient parsing algorithms
supporting data partitioned bitstreams are proposed and realized

with the proposed bitstream processor. The proposed design can
achieve MPEG-4 Advanced Simple Profile (excluding GMC and
QMC) Level 5 (720x576, 30fps) real time decoding.

The paper is organized as follows. The analysis of MPEG-4
video bitstream structure is shown in Sec. 2. Based on the analysis,
eflicient parsing algorithms supporting data partitioned bitstream
parsing are presented. The proposed architecture is shown in Sec.
3. The implementation result is presented in Sec. 4 . A conclusion
is given in Sec. 5 .

2. BITSTREAM PARSING ANALYSIS AND PROPOSED
ALGORITHMS

A detailed analysis for MPEG-4 video bitstream structure has been
discussed in 141: which shows that there are six classes of oper-
ations that occur very often in the bitstream parsing operations.
Based on its result, we focus on finding out the most critical part
during parsing and speedup it. In addition, to support the error re-
silience decoding function, a parsing approach for data partitioned
bitstreams is also illustrated.

2.1. Codeword Type Distribution

A software model for bitstream parsing is applied for MPEG-4
video decoding. The codeword distribution among several bit-
streams is acquired during parsing. Since the computation loading
of parsing is proportional to the bit-rate of encoded bitstream, we
only perform the analysis on high bit-rate bitstreams. The most
part is the DCT coefficient codewrods, which occupies about 70%
of the bitstream. The DCT coefficients not only are mass hut also
occur successively in the bitstream. Besides, if the DCT coeffi-
cients cannot be decoded for the MPEG-4 video decoder on time,
the decoding system have to be paused and the overall decoding
performance is decreased. So, the operations for DCT coefficient
decoding have to be optimized.

2.2. DCT Coefficients Decoding Analysis

The operations for the DCT coefficient decoding consist of four
parts:

I . Codeword Identijcarion: The beginning part of the bit-
stream is shown and VLC table lookup is performed in the corre-
sponding codebaok. If it is valid, the symbol address of the code-
word should be generated.

2. Symbol Lookup: After the address is generated, the parser
reads the symbol entry of the codeword. In DCT coefficient de-
coding, the looked-up symbol is the (run, level, last) pair. .

0-7803-7765-6/03/$17.00 02003 I E E E
168

Table 1. Cycle Analysis for I-VOP DCT Coefficients Decoding.
Sequence General Enhanced Percentage
Foreman 210.908 141.364 67.03%
News 122,734 99,394 8O.Y8%
Weather 319,659 210,993 55.5710

Table 2. Cycle Analysis for P-VOP DCT Coefficients Decoding.
Sequence General Enhanced Percentage
Foreman 99.905 80.246 80.32%
News 99,020 54,804 55 35%
Weather 43.611 35,165 80.63%

3. Symbol OurpudBitsfreum Update: The symbol is output
whenever the symbol is obtained. Meanwhile, the bitstream is up-
dated by discarding the last decoded codeword.

4. Branch decision: The output symbol is checked to see if the
DCT coefficient decoding process should be continued. Whether
the symbol is a legal symbol, an escape code, or the last coefficient
within a block should be checked.

2.3. Proposed DCT Coefficients Parsing Approach

The conventional processor-based implementations [4][5] for DCT
coefficients parsing focus on the first to third parts, but ignore the
fourtb part presented in Sec. 2.2. If we take it into account, the
required cycle for VLD in [4] is 4 rather than I , and that in [5]
is about 6 to 10 rather than 4. So, if we can merge this essential
branch decision operation with the former 3 parts, the decoding
performance can be improved.

A processor emulator with similar instruction architecture to
the RISC but slight modification is setup. Then, a firmware pro-
gram for bitstream parsing is written for simulation. In one case,
it's assumed that VLD operation can be finished in single instruc-
tion, hut the branch decision is required after each DCT decoding.
In the other case, the essential branch oepration is merged with
the VLD instruction such that the codeword decoding and branch
condition checking can be accomplished within one cycle. The
comparison on required cycle to parse on I- and P-VOP i s shown
in Table. 1 and Table. 2. It is shown that the improvement with
the new merged instruction is between 20% and 50% of processing
cycles. Thus, it's desirable to merge'the essential branch decision
operation with the VLD operation for a processor-based parser.

2.4. Proposed Data Partitioned Parsing Approach

A P-VOP video packet is composed of three parts: Morion port,
which keeps the motion data of all MBs, DC and low-frequenc~
DCT relared data, which contains DC values and the AC predic-
tion flag, and DCT coeficients. In each part, the data is ordered in
one MB after another. Since data within one MB is divided into
three different locations, either a large buffer to store the previ-
ously decoded data or parsing several times to obtain the necessary
codeword in the video packet is required. However, the former ap-
praoch costs too high, while the latter one is inefficient.

We propose an cost-effective algorithm to parse the data par-
titioned hitstream efficiently. It's shown in Fig. 1. The parsing is
composed of two stages. In the first'stage, the whole video packet

Fig. 1. Proposed Data Partitioned Bitstreams Decoding Approach.

Table 3. Cycle Overhead for Proposed Data-partitioned Parsing
Algorithm from Software Simulation.

Sequence Combined Data Partitioned Overhead Overhead(%)
Bream 100,528 1 11,399 10,871 10.81%
News 56,928 59,443 2,515 4.42%
Weather 93,344 100,460 7,116 7.62%

is only watched and stored to find the starting positions ofthe three
parts described above. After the starting positions of the three parts
are found, the second stage parsing starts. At first, the motion data
of the first MB are parsed. Then the DCIlow-frequency data of the
first MB, followed by the DCT coefficients of the first MB, are de-
coded. The data in the three parts are decoded alternatively until all
MBs in the video packet are parsed. With the proposed appraoch,
the required buffer size can be reduced greatly. While decoding
one frame with CIF size, only one packet buffer with maximum
packet size, which is 8K bits at MPEG-4 Advanced Simple Profile
Level 5 , and one side buffer with size about 700 bits arc required.
Compared with conventional implementation, which may needs
43K bits, the proposed algorithm is more cost-effective.

The cycle overhead for the proposed algorithm is shown in
Table. 3. We encode the sequence in either data partitioned mode
or non-data-partitioned mode, and use the emulator to parse it to
count the required cycles. It is shown that the overhead is tolerable
with respect to the total required cycle.

3. ARCHITECTURE DESIGN

3.1. Features

From the analysis results in previous section, the proposed bit-
stream processor has the following features:

Singlecycle DCT coeflcient decoding: As the analysis in the
previous section, the most critical section of our design, the DCT
coefficient decoding, involves two memory operations in one de-
coding cycle. One is the read operation for symbol lookup, and the

169

other is the write operation for data output. If we want the coeffi-
cient decoding to be completed in one cycle, there should be two
buses for one read and one write operation simultaneously on the
memory. Thus, we try to include a two-port RAM model into our
design for the two simultaneous memory operations.

Conditional executions: The analysis about the parsing opera-
tions in [4] shows the branch instruction occupies a large propor-
tion. The occurrence of the branch is so often, but the target for the
Jump usually consists of a single operation such a VLD or a FLD.
In order to eliminate the branch overhead, we introduce the con-
ditiunal executions in modem DSP and micro-controllers [6]. By
conditioning the execution with a flag (a one-bit register), every
instruction can he controlled more freely than the branch architec-
ture.

Bit-army operations: One-hit data is often found in the bit-
stream. General operations such as comparisons use one-bit sig-
nals, too. One-bit memory access operations. such as I-hit load
and I-bit store, are provided.

VLC table programmuble: To provide more flexibility and for
supporting other video coding standards in the future, the VLC
tables is programmable.

3.2. Proposed Instruction Set

We design the instruction set to provide the above features. It can
be divided into five categories according to its functionalities.

Arithmetic instructions: The Boolean logic operations, 16-bit
addition and subtraction are available. One 8-hit multiplier is also
included. Special functions such as absolute value, conversion
from sign-magnitude to 2's complement and hit-field extraction
are also available to use.

Bitstream operation instructions: There is a set of enhanced
bitstream operations, including fixed-length decoding and variahle-
length decoding. To optimize the DCT coefficient decoding, as
mentioned in the previous section. one special variable-length de-
coding instruction called 'REP.VLDS' is used for repeatedly de-
coding. With the help of conditional execution, i t will execute
DCT coefficient parsing repeatedly automatically until parsing for
a series of DCT coefficient codeword is finished.

Branch operations: Most of the RISC branch instructions are
replaced by the conditional execution. The branch instruction set
is reduced to jump with or without linking the return address to
registers, and the jump to address indicated by register.

Comparison: In parsing applicarions, the branch condition
generation often consists several data comparisons with Boolean
operations to each other. To make the comparison more efficient,
the comparison can use a logic operation such as AND/OR on a
conditional flag register and the current comparison result, and
write the logic result back to the conditional flag register.

Memory operations: 16-hi1, 32-bit, and single bit loadlstore
pairs of memory access operations are available. The single hit
load is simply masked the unnecessary bits from the loaded data
word, while the store operation is realized by adjusting the input
bit at correct position and writing back.

3.3. Bitstream Processor Architecture

The block diagram for the bitstream processor is sown in Fig. 2.
The processor is composed of four stages: hslNction Fetch(IF),
Execution(EXE), Memory Laad(MEML), and Write BacklMemory
Store(WBMS). The instruction is fetched from the program mem-
ory by the pmgmm counter, and buffered by a register. At the

Fig. 2. Block Diagram of Proposed Bitstream Processor.

execution stages, a bit sequencer provides the bask bitstream func-
tions such as show-bit and flush-hit operations. The group detector
I71 works as an address generator by taking the most front bits of
the bitstream from the sequencer and calculates the symbol ad-
dress. Simultaneously it sends back the number of bits to he dis-
carded to the sequencer to update the bitstream. Meanwhile, the
ALU provides some arithmetic functions such as addition, suhtrac-
tion, &bit multiplication and logic operations. The multiplexer at
the end of the EXE stages selects the output between the group de-
tector and the ALU. The group detector is applied here to perform
codeword identification and provide VLC table programmability.

At the MEML stages, data read address generated at the pie-
vious stage appears at the read address pon of the data memory.
Once the data is read, it passes the bit placing and extracting block
for bit replacement or bit extracting instructions. After the bit
placement, some instructions need to write the data back to the
memory, and the data write address is applied at the write ad-
dress port. Meanwhile the data will he written hack to the regis-
ter file, which contains 32 16-bit registers. through the write pon.
A pipeline controller exists for monitoring the execution of each
stage. It is responsible for clearing the pipeline registers if bubble
has tv be inserted, or stalling the pipeline when necessary.

To integrate the proposed design to a video decoding system,
an interface module is designed. It handles parameter control by
acquiring the parsed parameters and storing them in registers. The
parameters for the decoding units are refreshed for every MB de-
coding. It's designed with hardwired state machine. A FIFO is
provided inside the interface module for the decoded DCT coef-
ficients from the bitstream processor. The interface module stalls
either the following decoding units or the hitstream processor ac-
cording to whether the FIFO is empty or full.

3.4. Stream Handler

To support the compressed domain data partitioning parsing dis-
cussed in Sec. 2.4, a video packet buffer to store the packet data
and three addressing pointers for locating the start positions are re-
quired. In our design, the two components are included in stream
handler, which is an interface between the bitstream sequencer and
the external bitstream data input. Its block diagram is shown in
Fig. 3 The video packet buffer is addressed by three addressing
registers, which are corresponding to Pointer 0, 1 and 2, respec-
tively. The processor can access the external bitstream by using

170

Video Packet Buffer
4 4 I 4

External Bitstream Input I I > I L

‘ I 1 I
pointer

Address X 2 I
ILLD vLs Stream 1 Pointer Index

Fig. 3. Block Diagram of Stream Handler

Table 4. Cycle Overhead for Proposed Data-partitioned Parsing
Algorithm from Hardware Simulation.

Sequence Combined Data Partitioned Overhead Overhead(%)
Bream 204,516 225,104 20,588 10.07%
Weather 213.680 230,025 ’ 16,345 7.65%

Pointer 0, and the bitstream input data will be bypassed. Mean-
while, the stream handler writes the bitstream input data word
into the video packet buffer to save the packet data. By using the
Pointer I or 2, the addressing I or 2 wiU he activated to address the
packet buffer and send the data to the processor. Once the whole
packet has been parsed, a signal is passed to the stream handler to
reset the addressing registers to prepare next packet parsing.

4. IMPLEMENTATION

The proposed bitstream processor is integrated into the decoding
unit to form an MPEG-4 video decdding system. With TSMC
0.35um IP4M technology, it operates at 33MHz under 3.3V to
achieve MPEG-4 Advanced Simple Profile Level 5 (4CIF. 30fps)
real-time decoding. Its gate count is 32,603.

The overhead for parsing data partitioned bitstream twice from
hardware simulation is shown i n Table. 4. As discussed in Sec.
2.4, the overhead is negligible. The comparison results with other
implementations are shown in Table. 5 . The proposed design
achieves highest programmability with least required DCT coef-
ficient decoding cycle and small memory requirement.

5. CONCLUSIONS

The MPEG-4 video bitstream parsing analysis and an efficient
and flexible bitstream parsing processor are discussed in this pa-
per. The bitstream parsing andlysis explores that the most critical
part in hitstream parsing lies in DCT coefficient codeword decod-
ing. We propose approaches for DCT coefficients and data parti-
tioned hitstreams. Based on the analysis results and proposed ap-
proaches, an efficient instruction set optimized for bitstream pan-

Table 5. Comparison between Different Parser Implementation.

Implementation Proposed 141 151 [SI
Architecture Processor Processor RlSC Ex- Hardwire

tension
Programmability Yes Compile Yes No

DCT coefficients 1 4 610 I O 1
time

decoding cycle
Gate count 32K (RAM 24K 9K 20K

included)
Memory size IK Byte IK Byte 8K Byte 50 Byte

ing is presented, and the processor architecture is proposed and
implemented. It has been integrated in to an MPEG-4 video de-
coding system successfully and can achieve real time bitstream
decoding with bitstream coded under 4CIF frame size with 30 fps,
RMbps. This is the specification of MPEG-4 Advanced Simple
Profile Level 5.

6. REFERENCES

[I I Sigma Designs, “EM8470/EM8471/EM8475/EM8476
MPEG-4 decoder for set-top, DVD, and streaming applica-
tions,” in Sigma Designs Product Brief, 2000.

121 Toshiba. “MPEG-4 video decoder LSI TC35274,” in Tenfarive
Technical Datu Sheer, 2000.

[3] Amphion Semiconductor Ltd., “CS6750-MPEG-4 video de-
coder,” in Data Sheer, 2002.

141 Y. C. Chang, H. C. Chang, and L. G. Chen, “Design and im-
plementation of a bitstream parsing coprocessor for MPEG-
4 video system-on-chip solution:’ in International Synpo-
sium on VL(-l-Technology, Systems, and Applications (VLSI-
TSA’2001j. 2001, pp. 188-191.

[5] M. Berekovic, H. .I. Stolberg, M. B. Kulaczewski, and
P. Pirsch, “Instruction set extension for MPEG-4 video,” The
Journal of VLSI Signal Plocesring-Systemsfor Signal. Image,
and video Technology, vol. 23, nu. I , pp. 2 7 4 9 , Oct. 1999.

“High VelociTl processing [Texas Instruments
VLIW DSP architecture],” IEEE Signal Proce,wing Moga-
zinc vol. 15, no. 2, pp. 86-101, 117, Mar. 1998.

L7] B.1. Hsieh, Y. S. Lee. and C.Y. Lee, “A new approach of
group-based VLC cadec system with full table programma-
bility,” IEEE Transactions on Circuirs and Systems for Video
Technology, vol. 1 I , no. 2, pp. 216221, Feb. 2001.

L81 Y. C. Chang, W. H. Ji, and L. G. Chen, “A memory-efficient
MPEG-4 simple scalable profile decoder with optimized mo-
tion compensation,” in 3rd Workshop und Exhibiririn on
MPEG-4 (WEMP4j, 2002.

161 N. Seshan,

171

